Mucool Test Area Cryo-system Design

MICE/Mucool Meeting at LBL October 22th 2002

Status at Fermilab/ Beams Division/Cryogenic department by Ch. Darve, B. Norris, A. Martinez, L. Pei

(Presented by Edgar Black)

Overview of the need for Liquid Hydrogen

Main requirements for the cryo-system:

- ✓ Density fluctuation in the LH2 should be smaller than +/- 2.5 %
- ✓ P=1.2 atm=17.6 psia=0.12 MPa
- ✓ Subcool temperature => 17 K

- 1- Stay bellow boiling point
- 2- Temperature difference < 1 K (using a large safety factor)
 - in absorber volume
 - in the cryo-system

BD/Cryogenic DepartmentOverview of MuCool Test Area cryo-system - cryostat

Ch. Barve/ Fernilab/ Beams Division/ Cryogenic Department 03/21/02

Overview on the Absorber Pump flow method

The **LH₂ pump** was designed and built by Caltech as a spare pump for the SAMPLE experiment (½ dia. of the pump used in E158)

Purpose:

To circulate LH_2 in a close loop and provide force flow to remove the energy loss from the LH2 absorber, with $\Delta T < 1~K$

Schematic of SAMPLE

Max. available flow at 17 K, 1.2 atm = 450 g/s

Reference:

"E.J. Beise et al., A high power liquid hydrogen target for parity violation experiments, Research instruments & methods in physics research (1996), 383-391"

Overview on the Absorber Pump flow method

The LH₂ pump is composed of:

- ⇒ two impeller blades => to straighten the flow
- ⇒ three stators => to accelerate the flow
- ⇒ two cones => to reduce the impedance of the flow

Materials:

Impellers: Aluminum 6061 T6

Housing: 304

A motor located at room temperature drive the pump: ⇒ typical Tevatron Wet Engine 2 HP motor will be used

Overview on the Absorber Pump flow method

What is the mass flow needed to cool the beam?

Simulation of the flow by Wing Lau/ Charles H. Holding (Oxford) using Algor 2 D model

How to use the results?

Determine velocity so that $\Delta T < 1K$

We determine the velocity, V, for the addoc temperature difference, DT:

⇒m (for given DT, nozzle geometry and LH2 prop.)

 \Rightarrow DP(for LH₂ cryoloop)

SEE WING LAU TALK

Overview on the Absorber Pump flow method

We do need to understand the thermo-hydraulic behavior of the LH2 absorber

Example: Case of the maximum available flow by the LH2 pump

In order to be functional the LH2 absorber would need to be optimized (goal: reduction of the pressure drop)

Proposed changed: If V=4 m/s then m=450 g/s

		1			
()	ırre	nt	aea	ome	etry
			9		J J

LH2 abs:

Nozzle dia. = 0.6"

8 Supply nozzles

12 returns nozzles

Requested geometry

LH2 abs:

Nozzle dia. = 0.43"

11 Supply nozzles

15 returns nozzles

Piping in the magnet bore:

40 cm long IPS 1" pipes

10 cm long IPS 2"pipe

Piping in the magnet bore:

20 cm long IPS 1" pipes

30 cm long IPS 2"pipe

Part IV – A look at the Windows and Absorber Vessel LH2 Manifold absorber (by E. Black)

Process and Instrumentation Diagram

- Gas H2 bottle
- Gas N2 bottle
- O2 adsorber
- Vacuum pump
- Flam. Gas detector
- ODH detector
- Pneumatic air supply sys.

Instrumentation:

- Flowmeter Transducer
- Pressure Reg. Valve
- Safety Valve
- Manual Valve
- Excess flow Valve
- Pneumatic Valve
- Electrical Valve
- Check Valve
- Pressure Indicator
- Pressure Transducer

Equipment:

- Roughing Vacuum pump
- Turbo Molecular pump
- Gas He Supply/Return
- Gas N2 Supply/Return
- Liq. N2 Supply/Return
- Vaporizer
- Flam. Gas detector
- ODH detector
- Pneumatic air supply sys.

Instrumentation:

- Temperature Transducer
- Pres. Transducer and Indicator
- Flowmeter Indicator
- Heater
- Safety Valve
- **♦ Temperature Controlled Valve**
- Pressure Reg. Valve
- Manual Valve
- Electro+ Pneumatic Valve
- Check Valve

MuCool Helium Flow/Equipment Schematic

Part V – A look at the Hydrogen Proposal Cryo-system design

Part V – A look at the Hydrogen Proposal Cryo-system design

Cryo-system design

1 - Cryostat Set-up assembly:

- ➤ Piping IPS1, IPS2 Sc5, Bimetallic transitions...
- > Safety devices: Parallel plate, AGCO

Cryo-system design

1 - Cryostat Set-up assembly:

- Thermal + MLI,
- Vacuum vessel,
- Connection to pumping sys,
- > Transfer lines and bayonets.

Cryo-system design

2- Heat exchanger assembly:

- Copper coil,
- Outer shell,
- Diameter reduction,
- > He inlet and outlet,

Cryo-system design

3- LH2 Pump assembly:

- Pump torque transition,
- Motor outer shield,
- Cooling system,
- Pumping system of the outer shield,
- Relief valves piping.

Cryo-system design

4- Absorber assembly:

Implement Ed Black/Wing Lau drawings with cryostat vacuum vessel windows, absorber

Design interface of the systems (flanges, piping)

- Absorber manifolds
- Windows in the loop

Overview on the Absorber Pump flow method

Status:

- In order to design the total cryo-system, we do need to simulate the optimal flow regime (Oxford/cryo dpt).
- Focus:
 - Thermo-hydraulic behavior of LH2 absorber for which DTmax=1 K (and 3 K): DT, DP, mass flow, power distribution
 - Influence of the beam distribution (volume-surface distribution)
- Upgrades from the Algor model:
 - Geometry upgrade, temperature upgrade
 - Influence of the nozzle number to reduce the hot spot=>3D model

References:

http://www-bdnew.fnal.gov/cryo-darve/mu_cool/mu_cool_HP.htm

ICEC19 article - Cryogenic design for a liquid hydrogen absorber system